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Learning and predicting time series by neural networks
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Artificial neural networks which are trained on a time series are supposed to achieve two abilities: first, to
predict the series many time steps ahead and second, to learn the rule which has produced the series. It is
shown that prediction and learning are not necessarily related to each other. Chaotic sequences can be learned
but not predicted while quasiperiodic sequences can be well predicted but not learned.
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Neural networks are able to learn a rule from a set
examples. This paradigm has been used to construct ada
algorithms–named artificial neural networks–which a
trained on a set of input/output patterns generated by an
known function. After the training process, the network c
reproduce the patterns, but is also has achieved genera
tion: it has obtained some knowledge about the unkno
function.

In the simplest case the unknown function is a neu
network itself, the ‘‘teacher.’’A different neural network wit
an identical architecture, the ‘‘student,’’ is trained on a set
examples produced by the teacher. This so-called ‘‘stud
teacher’’ scenario has been intensively studied using mo
and methods of statistical physics@1–3#. Recently, these
methods have also been applied to learning and generatio
time series@4–9#.

The main result of these theoretical investigations is t
as the student network receives more information it increa
its similarity to the weights of the teacher network. When t
number of training examples is much larger than the num
of parameters of the teacher, the student is almost identic
the teacher and the generalization error is close to zero
this Rapid Communication, we show that this fundamen
relation between learning and generalization is violated w
a neural network is trained on a time series. We prese
class of networks with almost perfect prediction of the ser
and almost zero information about the rule. The oppo
case is found, as well: A network cannot predict a time se
although it is almost identical to the rule generating the
ries.

Hence, the intuitive deduction that learning a rule leads
good generalization and good generalization indicates g
knowledge about the rule is violated both ways when a n
ral network is trained on a time series.

We find this phenomenon already for a simple perceptr
a neural network with a single layer of synaptic weigh
given by the equation o5g(w•S). Here, w
5(w1 ,w2 , . . . ,wN) is the vector of synaptic weights,S
5(st21 ,st22 , . . . ,st2N) is the input of the network~win-
dow of the time series!, o is the output value, andN is the
size of the network. In the following, we will study differen
transfer functionsg(x). Such a perceptron can be used a
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sequence generator~teacher with weightswT) as well as a
network being trained on a time series~student with weights
wS) @5#.

The sequence is generated by a teacher network with
dom weights, starting from random initial condition
(sN ,sN21 , . . . ,s1); hence, it is defined by the equation

st5gS (
j 51

N

wj
Tst2 j D . ~1!

We define a timet0 in such a way that the sequence is s
tionary for anyt.t0. Here, ‘‘stationary’’ means that the se
quence lies on its attractor. The transient, which is ofO(N)
is not included in the training examples.

The training error is calculated from the absolute value
the deviation between the sequencest and the corresponding
outputot of the student,

e5 lim
T→`

1

T (
t5t011

t01T

ust2otu. ~2!

This is the average error of a one-step prediction of the
dent on the time series. Perfect training leads to zero erroe,
meaning that each number of the sequence is correctly re
duced:st5ot .

The student’s knowledge about the unknown parame
is measured by the overlapR between the weight vectors o
the teacher and the student,

R5
wT

•wS

uwTuuwSu
. ~3!

If the transfer function is continuous, it is also important th
the two vectors coincide in their lengthQS5QT with Q
5uwu.

First we discuss the Boolean perceptron,g(x)5sgn(x), of
sizeN which has generated a periodic bit sequence@5,7#. The
teacher perceptron has random weights with zero bias,
the cycle is related to one component of the power spect
of the weights. The student network is trained using the p
ceptron learning rule
©2002 The American Physical Society03-1
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Dwi
S5

1

N
stst2 i if st(

j 51

N

wj
Sst2 j,0;

Dwi
S50 else. ~4!

For this algorithm there exists a mathematical theorem@2#: If
the set of examples can be generated by some perce
then this algorithm stops, i.e., it finds one out of possi
many solutions. Since we consider examples from a bit
quence generated by a perceptron, this algorithm is gua
teed to learn the sequence perfectly.

The network is trained on the cycle until the training err
is zero. Hence, the student network can predict the statio
sequence perfectly. It turns out that the overlap between
dent and teacher remains small, in fact, it is zero for in
nitely large networks,N→` ~Fig. 1!. Although the network
predicts the sequence perfectly, it does not gain much in
mation on the parameters of the network which has ge
ated this sequence.

This situation seems to be different in the case of a c
tinuous perceptron. Inverting Eq.~1! for a monotonic trans-
fer function g(x) gives N linear equations forN unknowns

FIG. 1. Final overlapR between student and teacher netwo
after training, as a function of the sizeN of the network. The stan-
dard error bars result fromM5100 individual runs. A linear fit ofR
vs N21/2 supports the statement thatR→0 for N→`.
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T . If all patterns are linearly independent then batch tra

ing, usingN windows, leads to perfect learning.
A network with transfer functiong(x)5tanh(b x) gener-

ates a quasiperiodic time series, if the parameterb is larger
than a critical valuebc @6#. The form of the sequence i
characterized by an attractor of dimension equal to one
analytically in the leading order it is given by

st5tanh@A cos~2p q t/N!#, ~5!

with some gainA(b), which is nonzero above the bifurca
tion pointbc . Note, that in the typical sequence there is on
a contribution of one noninteger wave-numberq, which is
related to one dominant Fourier component of the coupli
wT, see@6# for details.

When trying to find the couplingswT by inverting the set
of Eq. ~1!, it turns out that even professional computer ro
tines often fail to perform the required matrix inversion: t
patterns are almost linearly dependent. Some explanation
that can be found from Eq.~5!. For smallA, the tanh in Eq.
~5! can be approximated by its argument and one can ea
show that st1252st12 cos(2pq/N)st11. Therefore, any
window of the sequence can be written as a linear comb
tion of two basis vectors. In case we expand the tanh in
~5! up to ther ’s term, one can show that the form ofst1m is
given by st1m(r)5(k50

r21B2k11$cos@2pq/N(2k11)#
2sin@2pq/N(2k11)#%, since cos(x)2r115(C2k11cos@(2k
11)x# whereCk andBk are constants. On one hand, as lo
as r is less than the window sizeN, the inputs are linearly
dependent and Eq.~5! cannot be inverted. On the other han
the power expansion of the tanh indicates thatBr drops ex-
ponentially with r. Thus, the linear dependence of th
N-dimensional inputs is lifted only by ther5N11 term in
the expansion which decreases exponentially asN increases.
This is the source for the ill-conditioned problem of invertin
Eq. ~5!.

Hence, in particular for large dimensionsN, batch learn-
ing does not work well for quasiperiodic time series gen
ated by a teacher perceptron.

How does this scenario show up in an on-line traini
algorithm for a continuous perceptron? If a quasiperiodic
quence is learned step by step using gradient descent to
date the weights, without iterating previous steps,
-

r-
FIG. 2. Return map for a qua
siperiodic~left! and chaotic~right!
time series used for training a pe
ceptron as described in the text.
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Dwi
S5

h

N
@st2g~h!#3g8~h!3st2 i

with

h5b(
j 51

N

wj
Sst2 j , ~6!

we find two time scales~time 5 number of training steps!:
~i! A fast one increasing the overlap between teacher
student to a value which is still far away from perfect agre
ment, R51 and QS5QT. During this phase, the trainin
error goes down to nearly zero.~ii ! A slow one further in-
creasing the overlap and still decreasing the training erro

Since the second time scale is usually several order
magnitude larger than the first one, we could not observR
51 within our numerical simulations. Although there is
mathematical theorem on stochastic optimization wh
seems to guarantee convergence to zero training erro~2!
@10#, which implies full overlapR51 with QS5QT, our on-
line algorithm cannot gain much information about t
teacher network, at least within practical times.

This is completely different for a chaotic time series ge
erated by a corresponding teacher network withg(x)
5sin(b x) @9#. It turns out that learning the chaotic seri
works like learning random examples: After a number
training steps of the order ofN the overlapR relaxes expo-
nentially fast to perfect agreement between teacher and
dent, R51. The same behavior can be observed for
length QS of the student, which approaches exponentia
fast to the length of the teacher.

Here are some details of the numerical calculations: O
simulations were performed with the same~random! teacher
weights for the quasiperiodic and the chaotic case. Furt
more, the random initialization of the student networks w
identical. The settings differ only in the choice of th

FIG. 3. OverlapR as a function of the fractiona5t/N of train-
ing examples. The upper curve shows the learning dynamic for
chaotic case, the lower one shows the two time scales for the t
ing on the quasiperiodic series. Both settings start with the s
initial overlap (R0'20.16). At a'0.5 the dynamics of the quas
periodic case enters the part with slow progress.
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transfer-functionsg(x). Return maps for the two sequenc
are shown in Fig. 2.

Starting with the same initial overlap, the students we
trained according to Eq.~6! until they achieved a certain
training error (e50.008). In both cases this took about 25N
learning steps, the network dimension wasN550. After the
training process however, the students ended up with c
pletely different weight vectors. In case of the chaotic s
quence, the student’s weights came close to the one of
teacher (R→1,QS→QT). In contrast, the student of the qua
siperiodic sequence did not obtain much information ab
the teacher, and its weights remained nearly perpendicula
the teacher ones (R'0). The time evolution of the respec
tive overlaps during training is shown in Fig. 3.

One important question remains: How well can the s
dent predict the time series? In order to evaluate the train
success, we have defined aone-step error in Eq.~2!. Now we
are interested in the long-term prediction of the studen
Therefore, the student perceptrons have to act as sequ
generators themselves, using their own output to comp
the next input window. Starting from a window of the teac
er’s sequence, i.e., (ot ,ot21 , . . .ot2N11)
5(st ,st21 , . . .st2N11), the student’s predictiont steps
ahead is given by iterating Eq.~1! up to

ot1t5gS b(
j 51

N

wj
Sot1t2 j D . ~7!

The prediction errore(t) is the average absolute deviation
this value with the respective item of the teacher’s sequen

e~t!5 lim
T→`

1

T (
t5t011

t01T

ust1t2ot1tu. ~8!

Note that the average is performed by changing the ini
time window. Again,t0 is used to indicate any time step o

e
in-
e

FIG. 4. Prediction error as a function of time steps ahead~mea-
sured in multiples ofN: a5t/N), for the quasiperiodic~lower! and
the chaotic~upper! series.
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the stationary part of the sequence. To calculatee(t) in the
simulations, we have chosenT5N550. The result is shown
in Fig. 4.

The graph shows the prediction error as a function of
time interval over which the student makes predictions. B
curves coincide in the first value, which is equal to the tra
ing error at which learning was stopped.

The student network which has been trained on the q
siperiodic sequence can predict it very well. The error
creases linearly with the size of the interval, even predict
25N steps ahead yields an error of less than 5% of the t
possible range. On the other side, the student trained on
chaotic sequence cannot make long-term predictions.
prediction error increases exponentially with time until it
of the order of random guessing.

Of course, if the student would reproduce the series p
fectly, it would also predict it without errors. But since w
stop our algorithm when the training error is close but n
identical to zero, we achieve two different states: For
quasiperiodic sequence the weight vector of the studen
covers the main Fourier component of the teacher which
produces the sequences reasonably well. There remai
ry

d
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large space of weight vectors which can generate the s
sequence. For the chaotic sequence, however, all the we
of the students come extremely close to the ones of
teacher; but due to sensitivity to model parameters, any
diction of the sequence is impossible.

All of our results stem from numerical simulations. W
find that the quantitative details of our results strongly d
pend on the parameters of our model. Hence, we did
succeed to derive quantitative results about scaling of le
ing times with system sizeN or the Lyapunov exponent as
function of the fractal dimension of the chaotic time serie

In summary we obtain the following result:~i! A network
trained on a quasiperiodic sequence does not obtain m
information about the teacher network which generated
sequence. But the network can predict this sequence
many ~of the order ofN) steps ahead;~ii ! a network trained
on a chaotic sequence, however, obtains almost comp
knowledge about the teacher network. But due to the cha
nature of the sequence, this network cannot make reason
predictions.
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