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Learning and predicting time series by neural networks
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Artificial neural networks which are trained on a time series are supposed to achieve two abilities: first, to
predict the series many time steps ahead and second, to learn the rule which has produced the series. It is
shown that prediction and learning are not necessarily related to each other. Chaotic sequences can be learned
but not predicted while quasiperiodic sequences can be well predicted but not learned.
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Neural networks are able to learn a rule from a set ofsequence generatgteacher with weightsv') as well as a
examples. This paradigm has been used to construct adaptiietwork being trained on a time seri@sudent with weights
algorithms—named artificial neural networks—which arewS) [5].
trained on a set of input/output patterns generated by an un- The sequence is generated by a teacher network with ran-
known function. After the training process, the network candom weights, starting from random initial conditions
reproduce the patterns, but is also has achieved generaliz&y ,Sy-1, - - - ,S1); hence, it is defined by the equation
tion: it has obtained some knowledge about the unknown

function. N T
In the simplest case the unknown function is a neural St=9 j§=:1 WiSt—j |- @)
network itself, the “teacher.” A different neural network with
an identical architecture, the “student,” is trained on a set ofyye define a time, in such a way that the sequence is sta-
examples produced by the teacher. This so-called “student{onary for anyt>t,. Here, “stationary” means that the se-
teacher” scenario has been intensively studied using modelguence lies on its attractor. The transient, which i€)¢N)
and methods of statistical physi¢4—3]. Recently, these s not included in the training examples.
methods have also been applied to learning and generation of The training error is calculated from the absolute value of
time seried4-9. the deviation between the sequersc@nd the corresponding
The main result of these theoretical investigations is thabutputo; of the student,
as the student network receives more information it increases
its similarity to the weights of the teacher network. When the .
number of training examples is much larger than the number e= lim T HEH |si—oy. 2
of parameters of the teacher, the student is almost identical to Toen o
the teacher and the generalization error is close to zero. Iﬁlh' is th f st dicti f the stu-
this Rapid Communication, we show that this fundamental IS 1S the average error of a one-step preaiction of the stu
dent on the time series. Perfect training leads to zero error

relation between learning and generalization is violated when . )
: . . : meaning that each number of the sequence is correctly repro-
a neural network is trained on a time series. We present

lass of networks with almost perfect prediction of the series /oS0 -t = 0t
class of networks with aimost periect prediction oTthe SeNes o 4 gent's knowledge about the unknown parameters

and almost zero information about the rule. The oppositt?s measured by the overldpbetween the weight vectors of
case is found, as well: A network cannot predict a time serieg e teacher and the student

although it is almost identical to the rule generating the se-
ries.

to+T

T WS
Hence, the intuitive deduction that learning a rule leads to R= M_ 3)

good generalization and good generalization indicates good lwT||wS|

knowledge about the rule is violated both ways when a neu-

ral network is trained on a time series. If the transfer function is continuous, it is also important that

We find this phenomenon already for a simple perceptronthe two vectors coincide in their leng®>=Q" with Q
a neural network with a single layer of synaptic weights,=|w|.

given by the equation o=g(w-S). Here, w First we discuss the Boolean perceptrg(x) = sgn), of
=(wy,W,, ... ,Wy) is the vector of synaptic weights$  sizeN which has generated a periodic bit sequeriGé]. The
=(St—1,St—2, - - - St—n) IS the input of the networKwin-  teacher perceptron has random weights with zero bias, and

dow of the time serigs o is the output value, anll is the  the cycle is related to one component of the power spectrum
size of the network. In the following, we will study different of the weights. The student network is trained using the per-
transfer functiong(x). Such a perceptron can be used as aeptron learning rule
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0.3~ , ; ; ; T WiT. If all patterns are linearly independent then batch train-
ﬁ j ing, usingN windows, leads to perfect learning.
0'25. L .. e e . A network Wlth transfer functlorg(x):tanhwx) gener_
; ates a quasiperiodic time series, if the paramgtés larger
0 than a critical valueB. [6]. The form of the sequence is
: characterized by an attractor of dimension equal to one and
0151 analytically in the leading order it is given by
Ok s;=tanf A cog27 q t/N)], (5)
0.05¢ : with some gainA(B3), which is nonzero above the bifurca-
j tion point B . Note, that in the typical sequence there is only
Ot : R B L a contribution of one noninteger wave-numlzgrwhich is
0 005 01 015 02 025 03 related to one dominant Fourier component of the couplings

N7 w', see[6] for details.

When trying to find the couplinga by inverting the set
of Eq. (1), it turns out that even professional computer rou-
tines often fail to perform the required matrix inversion: the

FIG. 1. Final overlapR between student and teacher network
after training, as a function of the si2&of the network. The stan-
dard error bars result frofl = 100 individual runs. A linear fit oR

vs N2 supports the statement thiat0 for N— . patterns are almost linearly dependent. Some explanation for
that can be found from Ed5). For smallA, the tanh in Eq.
1 N (5) can be approximated by its argument and one can easily
AWiSZ—StSH i Stz ststfj<0; sr_low that s;,,=—5;+2 COS(ZTC]/N).SH_]_. Ther_efore, any
N i=1 window of the sequence can be written as a linear combina-
tion of two basis vectors. In case we expand the tanh in Eq.
AWiS:o else. (4) (5) up to thep’s term, one can show that the form gf, ,, is
given by  Siim(p)=2{ZgBacs 1{cog2mg/N(2k+1)]
For this algorithm there exists a mathematical theof2mlf —sin27g/N(2k+1)]}, since  cos{)?1=3Cy . co9(2k

the set of examples can be generated by some perceptranl)x] whereC, andBy are constants. On one hand, as long
then this algorithm stops, i.e., it finds one out of possiblyasp is less than the window siz, the inputs are linearly
many solutions. Since we consider examples from a bit sedependent and E@5) cannot be inverted. On the other hand,
quence generated by a perceptron, this algorithm is guarathe power expansion of the tanh indicates tBatdrops ex-
teed to learn the sequence perfectly. ponentially with p. Thus, the linear dependence of the
The network is trained on the cycle until the training error N-dimensional inputs is lifted only by the=N+1 term in
is zero. Hence, the student network can predict the stationahe expansion which decreases exponentialli{ &screases.
sequence perfectly. It turns out that the overlap between stuFhis is the source for the ill-conditioned problem of inverting
dent and teacher remains small, in fact, it is zero for infi-Eq. (5).
nitely large networksN—< (Fig. 1). Although the network Hence, in particular for large dimensiohs batch learn-
predicts the sequence perfectly, it does not gain much inforing does not work well for quasiperiodic time series gener-
mation on the parameters of the network which has genemated by a teacher perceptron.
ated this sequence. How does this scenario show up in an on-line training
This situation seems to be different in the case of a conalgorithm for a continuous perceptron? If a quasiperiodic se-
tinuous perceptron. Inverting E¢l) for a monotonic trans- quence is learned step by step using gradient descent to up-
fer functiong(x) givesN linear equations foN unknowns date the weights, without iterating previous steps,

0.5
< FIG. 2. Return map for a qua-
o 0 siperiodic(left) and chaoticright)
time series used for training a per-
ceptron as described in the text.
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FIG. 3. OverlapR as a function of the fractioar=t/N of train- FIG. 4. Prediction error as a function of time steps ah@aga-
ing examples. The upper curve shows the learning dynamic for thgured i'n rﬁultiples oN: a=7/N), for the quasiperiodidower) and
chaotic case, the lower one shows the two time scales for the trair’{-he chaotic(uppe) ser-ies ’
ing on the quasiperiodic series. Both settings start with the same '
initial overlap Ry~ —0.16). Ata~0.5 the dynamics of the quasi-

periodic case enters the part with slow progress. transfer-functiongy(x). Return maps for the two sequences

are shown in Fig. 2.
s 7 ) Starting with the same initial overlap, the students were
Awp=glIsi—g(h)]xg’ (h)xs; trained according to Eq(6) until they achieved a certain
training error €=0.008). In both cases this took about\25
with learning steps, the network dimension wés 50. After the
N training process however, the students ended up with com-
h=/32 wis,_ | 6) pletely different weight vectors. In case of the chaotic se-
= T quence, the student’s weights came close to the one of the
teacher R—1,Q5—QT). In contrast, the student of the qua-
iperiodic sequence did not obtain much information about
e teacher, and its weights remained nearly perpendicular to
he teacher onesR=0). The time evolution of the respec-
tive overlaps during training is shown in Fig. 3.
One important question remains: How well can the stu-
ent predict the time series? In order to evaluate the training

we find two time scalegtime = number of training steps
(i) A fast one increasing the overlap between teacher an
student to a value which is still far away from perfect agree-
ment, R=1 and Q5=QT. During this phase, the training
error goes down to nearly zer@i) A slow one further in-
creasing the overlap and still decreasing the training error.

Sin.ce the second time s_cale is usually several orders cguccess, we have definedaestep error in Eq(2). Now we
magm_tude larger than_ the f.'rSt one, we could not obsa_ve are interested in the long-term prediction of the students.
=1 within our numerical simulations. Although there iS &ty retore, the student perceptrons have to act as sequence
mathematical theorem on stochastic optimization Wh'crbenerators themselves, using their own output to complete
seems to guarantee convergence to zero ftraining €80T the next input window. Starting from a window of the teach-
[10], which implies full overlapR=1 with QS=Q, our on- er's sequence e o(,0 o )
line algorithm cannot gain much information about the:(st S 1 .. -Sth+’1) the student's. p;rielciiction;ig;elps
teacher network, at least within practical times. ahea’d is éiven by iteréting E6l) up to

This is completely different for a chaotic time series gen-
erated by a corresponding teacher network wigfx)
=sin(Bx) [9]. It turns out that learning the chaotic series 0, .=g
works like learning random examples: After a number of
training steps of the order d@f the overlapR relaxes expo-
nentially fast to perfect agreement between teacher and st@he prediction errok( ) is the average absolute deviation of
dent, R=1. The same behavior can be observed for thehis value with the respective item of the teacher’s sequence,
length QS of the student, which approaches exponentially

N
ﬁ;l W0, j) : @)

fast to the length of the teacher. to+T
Here are some details of the numerical calculations: Our e(r=1lim= [St4 »— Oty 4. (8)
simulations were performed with the saifmandon) teacher Tl t=tp+1

weights for the quasiperiodic and the chaotic case. Further-
more, the random initialization of the student networks were\Note that the average is performed by changing the initial
identical. The settings differ only in the choice of the time window. Again,t, is used to indicate any time step of
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the stationary part of the sequence. To calcuk{ted) in the large space of weight vectors which can generate the same

simulations, we have chosd@=N=50. The result is shown sequence. For the chaotic sequence, however, all the weights

in Fig. 4. of the students come extremely close to the ones of the
The graph shows the prediction error as a function of théeacher; but due to sensitivity to model parameters, any pre-

time interval over which the student makes predictions. Bottliction of the sequence is impossible. _ _

curves coincide in the first value, which is equal to the train-  All of our results stem from numerical simulations. We

ing error at which learning was stopped. find that the quantitative details of our results strongly de-

The student network which has been trained on the qua?€nd 03 th% parameters of our mlodelb Hence,l_we ?Ild not
siperiodic sequence can predict it very well. The error in-SUcceed to derive quantitative results about scaling of learn-

creases linearly with the size of the interval, even predictin ng times with system sizh or'the Lyapunov exponent as a
|unctlon of the fractal dimension of the chaotic time series.

1 0,
25N steps ahead yields an error of less than 5% of the tota In summary we obtain the following resulf) A network

possmle range. On the other side, the student trz;m_ed on tkHaained on a quasiperiodic sequence does not obtain much
chaquc_ sequence cannot make 'Oﬂg'ter”.‘ p(ed|ct|or}s: Thﬁformation about the teacher network which generated the
prediction error increases exponentially with time until it is sequence. But the network can predict this sequence over
of the order of random guessing. _ many (of the order ofN) steps aheadji) a network trained

Of course, if the student would reproduce the series pergy 5 chaotic sequence, however, obtains almost complete
fectly, it would also predict it without errors. But since we ynqyledge about the teacher network. But due to the chaotic

stop our algorithm when the training error is close but noty4re of the sequence, this network cannot make reasonable
identical to zero, we achieve two different states: For thepredictions.

quasiperiodic sequence the weight vector of the student re-
covers the main Fourier component of the teacher which re- 1.K. acknowledges the partial support of the Israel Science
produces the sequences reasonably well. There remainsFaundation.
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